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Abstract: In this paper, closed-form optimal parameters
of inerter-based variant dynamic vibration absorber (vari-
ant IDVA) coupled to a primary system subjected to base
excitation are derived based on classical fixed-points the-
ory. The proposed variant IDVA is obtained by adding an
inerter alone parallel to the absorber damper in the vari-
ant dynamic vibration absorber (variant DVA). A new set
of optimum frequency and damping ratio of the absorber
is derived, thereby resulting in lowermaximum amplitude
magnification factor than the inerter-based traditional dy-
namic vibration absorber (traditional IDVA). Under the
optimum tuning condition of the absorbers, it is proved
both analytically and numerically that the proposed vari-
ant IDVA provides a larger suppression of resonant vibra-
tion amplitude of the primary system subjected to base ex-
citation. It is demonstrated that adding an inerter alone to
the variant DVA provides 19% improvement in vibration
suppression than traditional IDVA when the mass ratio is
less than 0.2 and the effective frequency bandwidth of the
proposed IDVA is wider than the traditional IDVA. The ef-
fect of inertance and mass ratio on the amplitude magni-
fication factor of traditional and variant IDVA is also stud-
ied.
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1 Introduction
A tuned-mass damper, or a dynamic vibration absorber
(DVA), is a passive vibration device used to reduce res-
onant vibration. The concept of undamped DVA was in-
troduced by [9] and it is useful in a narrow range of fre-
quencies very close to the natural frequency of the DVA.
[16] introduced the damped DVA which is useful over a
wide frequency band. It is also known as the traditional
DVA in which a spring and damping element are arranged
in parallel. [16] first deduced that all frequency response
curves of the undamped primary system pass through two
invariant points independent of absorber damping when
a harmonic force is applied to the primary system. Follow-
ing this characteristic, the desired optimum value of the
absorber’s resonance frequency can be found when the
heights of two points are equal. [2] developed the mathe-
matical theory known as fixed-points theory and showed
that the optimum absorber damping ratio can be detected
by making the height of the fixed points to the maximum.
The optimal tuning ratio and damping ratio of the tradi-
tional DVA determined by using the fixed-point method
are not exact, because some approximations are taken
when optimal parameters are derived. The optimum pa-
rameters were introduced by Den Hartog through his well-
known textbook Mechanical Vibrations, and now we all
know these expressions [10]. However, [15] proposed the
exact solutions and compared those with the results given
by [10]; they found that both optimal tuning ratio and
damping ratio presented by Den Hartog were very close to
the exact solutions. When the primary system takes into
account damping, it is difficult to obtain analytical solu-
tions for the optimum parameters of the standard DVA. [1]
presented a series of analytical solutions for the DVA at-
tached to dampedprimary systemsbyminimizing themax-
imum amplitude magnification factor of damped primary
systems. For damped primary system, a number of studies
have focused on the numerical solutions. These include,
but are not limited to, numerical optimization schemes
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[13, 18], frequency locus method [22] and min–max crite-
ria [3, 8, 17]. A non-traditional type DVA, also called a vari-
ant DVA, was introduced by [19] in which the absorber
damper is connected to the rigid frame. For undamped pri-
mary system, the design procedure for traditional DVAs
has also been extended to variant DVAs and several at-
tempts have beenmade to find optimal parameters analyti-
cally [6, 7, 14], and for damped primary systems, analytical
and numerical solutions are available in [13].

Recently, an inerter-based DVA has attracted many re-
searchers. It has been successfully used in Formula-one ve-
hicle suspension systems initially and after that applied to
various mechanical systemsmainly, including vehicle sus-
pensions and vibration suppression. It is a two-terminal
mechanical device introduced by [21], which has the prop-
erty that the applied force at its two terminals is directly
proportional to the relative acceleration between the two
terminals, and the constant of proportionality is called
inertance with a unit of kilogram. [5] investigated the in-
fluence of inerter on the natural frequencies of vibrating
systems and found that the inerter can reduce the natu-
ral frequencies of vibrating systems. [12] derived the op-
timal parameters of traditional IDVA for undamped pri-
mary system using fixed-points theory and also concluded
that adding a single inerter alone to the traditional DVA,
whether inparallel connectionor in series connection, pro-
vides no improvement in the H∞ optimization. [11] inves-
tigated the damping performance of inerter-based isola-
tor and compared the optimal parameters of inerter-based
isolator with traditional DVA. [20] investigated the inerter-
basedDVAaddedon thebodymass and concluded that the
new suspension structure called inerter-based suspension
can effectively improve the damping performance of the
suspension system. [4] investigated how additional damp-
ing and inerter introduced by supplementary devices in-
fluence the system dynamics and compared the effects
caused by the additional damper and inerter.

From the previous studies, it is clear that extensive
studies have been carried out on optimization of tradi-
tional and variant DVAs. However, optimization of variant
IDVA for damped and undamped primary systems has not
been studied extensively. To the author’s knowledge, there
is no research report found in literature on this topic. The
primary focus of this present work is to derive the closed-
form analytical expression for optimal parameters of vari-
ant IDVA excited by ground motion using fixed-points the-
ory, whereas for damped primary system, numerical opti-
mization techniques are used. The amplitude magnifica-
tion factor variant IDVA is compared with traditional IDVA
and it is proved that the proposed IDVA provides a larger
suppression of resonant vibration amplitude of the pri-

mary systemexcitedbygroundmotion than the traditional
IDVA, even though the inerter alone is coupled to the ab-
sorber damper in a parallel manner. All these constitute
the main contributions of this paper.

This paper is organized as follows: Mathematical
model and equation of motion are introduced in Section 2.
Optimal solution to variant IDVAbased onfixed-points the-
ory is explained in Section 3. The minimax optimization
problem formulation and numerical simulation, and the
comparison of traditional and variant IDVAs are explained
in Sections 4 and 5, respectively. Section 6 provides de-
tailed analysis and discussions of results. Section 7 sum-
marizes important findings of the paper.

2 Methodology

2.1 Mathematical model and equation of
motion

Inerter-based traditional and variant DVA is obtained by
adding an inerter alone parallel to traditional DVA and
variant DVA. Figure 1 shows traditional and variant IDVA
systems coupled to damped primary system subjected to
base excitation.

Figure 1: Types of various inerter-based dynamic vibration ab-
sorbers for damped primary system: (a) traditional IDVA; (b) variant
IDVA.

The equation of motion of the proposed variant IDVA
is given by

m1 ẍ1 + c1 ẋ1 + (k1 + k2)x1 − k2x2 = c1 ẏ + k1y (1)
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m2 ẍ2 + bẍ2 + c2 ẋ2 + k2(x2 − x1) = bÿ + c2 ẏ (2)

where m1 and m2 are the masses of the primary and ab-
sorber systems, x1 and x2 are the displacement of the pri-
mary and absorber systems, k1 and k2 are the linear spring
constants of the primary and absorber systems, and c1 and
c2 are the viscous damping coefficients of the primary and
absorber systems, respectively; and b is the inertance. As-
suming a harmonic disturbing input y = Ye−jωt.

2.2 Dynamic amplitude magnification factor
for undamped primary system

For traditional and variant undampedDVA, thefixed-point
theory is commonly used to obtain the optimal parame-
ters. The absorber frequency and damping ratio of tradi-
tional IDVA excited by ground motion is equal to the op-
timal parameters of traditional IDVA which is derived by
[12]. They concluded that there is no improvement in the
H∞ optimization by adding inerter alone to the traditional
IDVA. In this section, the absorber and frequency damp-
ing ratios of variant IDVA are derived by using fixed-points
theory, because there always exist two invariant (fixed)
points with respect to damping ratio of the variant IDVA.
The non-dimensional amplitude magnification factor of
the proposed IDVA excited by groundmotion is as follows:

G =
⃒⃒⃒⃒
X1
Y

⃒⃒⃒⃒
(3)

=

√︁
(f 2 − r2 − δf 2µr2 − δr2)2 + (2ξ2f 3µr + 2ξ2fr)2

√
A

where

A =
(︁
r4 + f 2 + δr4 − r2 − δf 2µr2 − δr2 − f 2µr2 − f 2r2

)︁2
+
(︁
2ξ2f

(︁
f 2µ + 1

)︁
r − 2ξ2f r3

)︁2
To obtain the non-dimensional amplitude magnifica-

tion factor of the proposed IDVA model, the following di-
mensionless parameters are used:

ωi =
√︂
ki
mi

, f = ω2
ω1

, µ = m2
m1

, ξi =
ci

2
√︀
kimi

, (4)

r = ω
ω1

, δ = b
m2

, i = 1, 2

To exhibit the characteristics, the results in numerous
cases of absorber damping ratio ξ2 are given in Figure 2
under m1 = 1 kg, µ = 0.1, δ = 0.1, f = 1.1189. It is obviously
seen that there exist two common points (P and Q) on all
the amplitude magnification factor of primary system re-
sponse curves, where the amplitude magnification factor

of primary system is not influenced by the absorber damp-
ing ratio. These points are referred to as the fixed points or
invariant points.

Figure 2: The amplitude magnification factor of variant IDVA with
primary system where µ = 0.1, δ = 0.1 and various values of
absorber damping ratio (ξ2 = 0.05, 0.10, 0.15).

The optimum condition of variant IDVA can be at-
tained by fine-tuning the responses at P and Q to the equal
level (optimum frequency), and meanwhile making P and
Q the maximum points on the response curves (optimum
damping). This design rule is the eminent fixed-points the-
ory [10]. In the following, this theory will be utilized to de-
velop the optimumdesign of variant IDVA. Tofind the fixed
points P and Q, Den Hartog expressed Equation (3) in the
form

G =

√︃
Aξ2 + B
Cξ2 + D (5)

where

A = (2ξ2f 3µr + 2ξ2fr)2, B = (f 2 − r2 − δf 2µr2 − δr2)2,

C =
(︁
2ξ2f

(︁
f 2µ + 1

)︁
r − 2ξ2f r3

)︁2
D =

(︁
r4 + f 2 + δr4 − r2 − δf 2µr2 − δr2 − f 2µr2 − f 2r2

)︁2
which is totally independent of absorber damping ratio
(ξ2) if AC = B

D . Following the same procedure, we solve the
equation

(f 2µ + 1)2(︀
f 2µ + 1 − r2

)︀2
= (f 2 − r2 − δf 2µr2 − δr2)2(︀

r4 + f 2 + δr4 − r2 − δf 2µr2 − δr2 − f 2µr2 − f 2r2
)︀2
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The solutions are

r1 =
(−H)(J − I)

1
2

2 ; r2 =
(−H)(J + I)

1
2

2
where

H =
√︀
−(4δf 2µ + 2f 2µ + 4δ + 4)
(2δf 2µ + f 2µ + 2δ + 2)

I = (−2δf 4µ2 − f 4µ2 − f 4µ − 4δf 2µ − 3f 2µ − 2f 2 − 2δ − 2)

J = (4δ2f 8µ4 + 4δf 8µ4 + 4δf 8µ3 + f 8µ4 + 16δ2f 6µ3

+ 2f 8µ3 + 20δf 6µ3 + f 8µ2 + 6f 6µ3 + 24δ2f 4µ2 + 2f 6µ2

+ 36δf 4µ2 + 4f 6µ − 12δf 4µ + 13f 4µ2 + 16f 2δ2µ − 8f 4µ

+ 28δf 2µ + 4f 4 − 8δf 2 + 12f 2µ + 4δ2 − 8f 2 + 8δ + 4)
1
2

K = (−2δ − 2)

The ordinates of points P and Q can be found by approxi-
mating ξ →∞ in the equation

G =
√︃

(f 2µ + 1)(︀
f 2µ + 1 − r2

)︀ (6)

and the optimum value for fopt is obtained by equating
G(r1) and G(r2)

(f 2µ + 1)(︀
f 2µ + 1 − r2

)︀ = − (f 2µ + 1)(︀
f 2µ + 1 − r2

)︀
This gives

fopt =

√︃
−(8µδ + 2

√︀
−8δµ + µ2 − 4µ + 4 + 6µ − 4)
4µ(2δµ + µ − 1) (7)

Substituting r1 and fopt in Equation (6) gives the common
ordinate

Gopt = G(r1) = G(r2) =
L

(M + N)
1
2

(8)

where

L = −1(
√︀
4 + µ2 − 8δµ − 4µ + µ)

4
·
[︁
(2δ
√︀
4 + µ2 − 8δµ − 4µ +

√︀
4 + µ2 − 8δµ − 4µ − 2δµ

− µ + 2)
√︀
−2µ)

]︁
M = ((16δ3 + 24δ2 + 8δ − 1)µ2 + (16δ2 − 12δ)µ + 4δ)

·
√︀
4 + µ2 − 8δµ − 4µ − 8δ

N = (32δ4 + 80δ3 + 72δ2 + 24δ + 1)µ3

+ (−64δ3 − 96δ2 − 40δ − 2)µ2 + (40δ2 + 28δ)µ

In Equation (7), the optimum tuning ratio conditionwas in-
ferred. In order to find the optimumdamping ratio tomake

points P and Q the maximum on the amplitude magnifi-
cation factor of primary system frequency response curve,
now we apply Brock’s [2] approach to find the optimum
damping ratios at points P and Q (i.e. ξp and ξQ). Taking
average of both the values, finally we obtain the absorber
damping ratio optimal valuewhen inertance-to-mass ratio
is zero:

ξ2 =
(︀
µ7 (µ − 3) (µ − 2) (µ − 1)

)︀
48
(︂
(Y − X)

(︂
1
3

√︁
(µ − 2)2 − 2

3 + µ
)︂
(Y + X)

)︂ 1
2

(9)

where

X =
(︃
1
8µ

2(µ − 2)2
(︂
µ −

√︁
(µ − 2)2 − 2

)︂

·

√︃
µ2
(︂
µ −

√︁
(µ − 2)2 − 2

)︂)︃

Y =
√
−2
(︃(︂

3
4µ

9/2 − 3
2µ

7/2 − 1
8µ

11/2 + µ5/2
)︂√︁

(µ − 2)2

− µ11/2 + µ
13/2

8 + 3µ9/2 + 2µ5/2 − 4µ7/2
)︃

Apparently, with the approximation involved in Equa-
tion (9), one cannot accuratelymake points P and Q as the
maximum points of the amplitude magnification factor of
the proposed variant IDVA primary system response curve.
Figure 3 shows the amplitude magnification factor of the
proposed variant IDVAprimary system response curves un-
der the optimum tuning condition derived herein. Equa-
tions (7)–(9) clearly show that the optimal parameters and

Figure 3: Amplitude magnification factor of variant IDVA primary
system where µ = 0.1, f = 1.1189, δ = 0.1 and for various values of
absorber damping (ξ2 = 0.2207, ξ2 = 0.10, ξ2 = 0.15).
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Table 1: Comparison of Numerical Results of IDVAs with Approximate Solutions.

Inerter-Based Dynamic Vibration
Absorber

Variables/
Function

Approximate Solution when
ξ1 = 0

Present Study Numerical
solution when ξ1 = 0

Traditional IDVA µ = 0.1, δ = 0.1
ξ2,opt
fopt
G

0.185
0.957
4.817

0.186
0.957
4.822

Variant IDVA µ = 0.1, δ = 0.1
ξ2,opt
fopt
G

0.210
1.115
4.133

0.220
1.118
4.179

amplitude magnification factor of the primary system of
variant IDVAs will be equal to the optimal parameters of
variant DVA excited by groundmotion, which is derived by
[23] when the inertance-to-mass ratio (δ) of variant IDVA
becomes zero. The optimal parameters of traditional IDVA
subjected to base excitations are derived analytically byus-
ing fixed-points theory and are shown:

fopt =
√︀
δ(1 + µ) + 1
1 + µ (10)

ξ2 =
√︂

3µ
8(1 + µ) (11)

and the optimal height at the two fixed points is

Gopt =

√︃
2δ(µ + 1) + µ + 2

µ (12)

2.3 Minimax optimization formulation

In most systems, the frequencies of the external distur-
bances are not known exactly. An ideal vibration absorber
will perform well over a range of possible external forc-
ing frequencies. [17] has developed a method which uses
Chebyshev’smin–max criterion to arrive at the optimal pa-
rameters of a vibration absorber. The minimax optimiza-
tion finds the values of design variables which minimize
the normalized displacement of the primary system over
the frequency ranges. According to [18], it has been as-
sumed that ξ1 and µ are independent parameters and the
remaining parameters that have to be optimized are ξ2 and
f .

The optimization problem proposed in this paper can
be constituted as the minimax problem:

min
ξ2 ,f

maxG
(rl≤r≤ru)

(13)

The solution to Equation (13) will be the ξ2 and f which
will minimize the maximum over the domain of interest of
frequency ratio range r.

2.4 Numerical results and comparison

For traditional and variant DVAs in which ξ1 = 0, a closed-
form analytical solution was given by [10] and [9]. For tra-
ditional IDVAs in which ξ1 = 0, a closed-form analytical so-
lution of frequency and absorber damping ratio was given
by [12]. For variant IDVA excited by ground motion, the
closed-form analytical solution is presented in this paper.
For undamped system, thenumerical results are compared
with analytical solutions derived for inerter-based tradi-
tional and variant IDVAs excited by groundmotion and are
shown in Table 1. The same values are plotted in Figure 4
under the following valuesm1 = 1 kg, µ = 0.1, ξ1 = 0, ω1 = 1
rad/sec, and δ = 0, respectively. Close agreement between
the two values are observed.

To get an optimumvariant IDVA excited by groundmo-
tion, a larger frequency and damping ratio are needed. It
gives better vibration suppression than traditional IDVA
which is evident with the obtained G value that is smaller
when compared to the same obtained for traditional IDVA.

3 Analysis and discussion of
results

Figure 5 shows the comparison between traditional and
variant IDVAs for different values of inertance-to-mass ra-
tio (δ) under the following conditions m1 = 1 kg, µ = 0.1,
ξ1 = 0, ω1 = 1 rad/sec, respectively. It is clearly shown that
the amplitude magnification factor of primary system in-
creases with increase in inertance-to-mass ratio as shown
in Figure 5(a) and in the case of variant IDVA, the am-
plitude magnification factor of primary system decreases
with increase in inertance-to-mass ratio as shown in Fig-
ure 5(b). As a result, it is sufficient to conclude that the
proposed variant IDVA provides significant improvement
in the suppression of vibration of the primary system by
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(a)

(b)

Figure 4: Comparison of amplitude magnification factor of primary
system when ξ1 = 0, δ = 0: (a) traditional IDVA; (b) variant IDVA.

choosing a proper inertance-to-mass ratio, frequency and
absorber damping ratio by adding inerter alone to the vari-
ant DVA. Also, Figure 5(b) clearly shows that the frequency
bandwidth of variant IDVA is wider than traditional IDVA
for particular value of design parameters.

The proposed minimax approach is also used to study
the effect of mass ratio on the optimal amplitude magnifi-
cation factor of primary system in traditional and variant
IDVAs over the frequency range as shown in Figures 6(a)
and 6(b). The amplitude magnification factor of variant
IDVA is small when compared to traditional IDVA for vari-
ous values of mass ratio.

The optimal maximum amplitudes of primary system
are plotted in Figure 7(a) over the range of 0 < µ ≤ 0.2.
As shown in Figure 7(b), the proposed IDVA (adding in-
erter alone to the variant IDVA) gives more vibration sup-
pression (over 19%) than the traditional IDVA when the
mass ratio is less than 0.2 for the following: δ = 0.1, ξ1 =

(a)

(b)

Figure 5: Comparison of amplitude magnification factor of primary
system: (a) traditional IDVA, (b) variant IDVA for different values of
inerter-to-mass ratio (δ).

0. It is more than sufficient to conclude that the variant
IDVA gives a better vibration suppression evidenced by a
smaller G value, if the frequency, damping and inertance-
to-mass ratios of the proposed IDVA are chosen properly.

The amplitude magnification factors of traditional
and variant IDVAs of undamped primary system excited by
ground motion under optimum tuning and damping with
were calculated analytically and the calculation result is
plotted in Figure 8. It proved analytically that the proposed
variant IDVA provides a larger suppression of resonant vi-
brationamplitudeof theprimary systemexcitedbyground
motion than the traditional IDVA and also the frequency
bandwidth is increased in the proposed variant IDVA.
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(a)

(b)

Figure 6: Contour plot of amplitude magnification factor of primary
mass with different mass ratios: (a) traditional IDVA, (b) variant IDVA
when δ = 0.1, ξ1 = 0.

4 Conclusions
In this paper, the performance of inerter-based variant
DVAs subjected to base excitation has been investigated,
where the proposedmodel is obtainedby adding an inerter
alone in the variant DVA in parallel manner. Also, a closed-
form analytical solution for the optimal parameters of the
proposed variant IDVA, coupled with undamped primary
system, is obtained by using fixed-points theory. The pro-
posed IDVA and the traditional IDVA were compared and
analytical results of the proposed variant IDVA exhibit fre-
quency and damping ratios, as a function of the mass and
inertance-to-mass ratio, higher than those of traditional
IDVA optimal parameters. The results showed that adding
inerter alone parallel to the variant DVA provided 19% im-
provement in the case of vibration reduction obtained over

(a)

(b)

Figure 7: (a) Optimal maximum amplitude of primary system in the
H∞ optimization with different mass ratios when δ = 0.1, ξ1 = 0.1;
(b) percentage reduction relative to traditional IDVA.

Figure 8: Comparison of amplitude magnification factor of primary
system.
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traditional IDVA when mass ratio was less than 0.2. It has
also been observed that when the inertance-to-mass ratio
increases, the amplitude magnification factor of the pri-
mary system also increases in traditional damped IDVA,
whereas it decreases in the proposed IDVA. Furthermore,
the effect of absorber mass ratio on the amplitudemagnifi-
cation factor of the primary system was studied over the
frequency range. Finally, it is also observed that for the
same model parameters, the frequency bandwidth of the
proposed IDVA is wider than that of traditional IDVA.

References
[1] Asami, T., Nishihara, O. and Baz, A.: Analytical Solutions to H∞

and H2 Optimization of Dynamic Vibration Absorbers Attached
to Damped Linear Systems, Journal of Vibration and Acoustics,
124, 284-295, 2002.

[2] Brock, J.E.: A Note on the Damped Vibration Absorber, ASME
Journal of Applied Mechanics, 13, A-284, 1946.

[3] Brown, B. and Singh, T.: Minimax design of vibration absorbers
for linear damped systems, Journal of Sound and Vibration, 330,
2437–2448, 2011.

[4] Brzeski, P., Kapitaniak, T. and Perlikowski, P.: Novel type of tuned
mass damper with inerter which enables changes of inertance,
Journal of Sound and Vibration, 349, 56–66, 2015.

[5] Chen, M.Z.Q.: Influence of inerter on natural frequencies of vibra-
tion systems. Journal of Sound and Vibration, 333, 1874–1887,
2014.

[6] Cheung, Y.L. andWong,W.O.: H2 optimization of a non-traditional
dynamic vibration absorber for vibration control of structures
under random force excitation, Journal of Sound and Vibration,
330, 1039–1044, 2011.

[7] Chun, S., Lee, Y. and Kim, T.H.: H∞ optimization of dynamic vi-
bration absorber variant for vibration control of damped linear
systems, Journal of Sound and Vibration, 335, 55–65, 2015.

[8] Fang, J. and Qi, S.W.: Optimal design of vibration absorber using
minimax criterion with simplified constraints, Actamechanica,
28, 848–853, 2012.

[9] Frahm, H.: Device for Damping Vibrations of Bodies, U.S. Patent,
No. 989, 958, 3576–3580, 1911.

[10] Den Hartog, J.P.: Mechanical Vibrations, 1985.
[11] Hu, Y.: Analysis and optimisation for inerter-based isolators via

fixed-point theory and algebraic solution, Journal of Sound and
Vibration, 346, 17–36, 2015.

[12] Hu, Y. and Chen, M.Z.Q.: Performance evaluation for inerter-
based dynamic vibration absorbers, International Journal of Me-
chanical Sciences, 99, 297–307, 2015.

[13] Liu, K. and Coppola, G.: Optimal design of damped dynamic
vibration absorber for damped primary systems, Transactions of
the Canadian Society for Mechanical Engineering, 34, 119–135,
2010.

[14] Liu, K. and Liu, J.: The damped dynamic vibration absorbers:
revisited and new result. Journal of Sound and Vibration, 284,
1181–1189, 2005.

[15] Nishihara, O. and Asami, T.: Closed-Form Solutions to the Exact
Optimizations of Dynamic Vibration Absorbers (Minimizations
of the Maximum Amplitude Magnification Factors), Journal of
Vibration and Acoustics, 124, 576-582, 2002.

[16] Ormondroyd, J. and Den Hartog J.P.: The Theory of the Dynamic
Vibration absorber, ASME Journal of Applied Mechanics, 50, 9–
22, 1928.

[17] Pennestrí, E.: An Application of Chebyshev’S Min–Max Criterion
To the Optimal Design of a Damped Dynamic Vibration Absorber,
Journal of Sound and Vibration, 217, 757–765, 1998.

[18] Randall, S.E., Halsted, D.M. and Taylor, D.P.: Optimum Vibration
Absorbers for Linear Damped Systems, Journal of Mechanical
Design, 103, 908-913, 1981.

[19] Ren, M.Z.: A Variant Design of the Dynamic Vibration Absorber,
Journal of Sound and Vibration, 245, 762–770, 2001.

[20] Shen, Y.: Improved design of dynamic vibration absorber by us-
ing the inerter and its application in vehicle suspension, Journal
of Sound and Vibration, 361, 148–158, 2015.

[21] Smith, M.C.: Synthesis of mechanical networks: The inerter, IEEE
Transactions on Automatic Control, 47, 1648–1662, 2002.

[22] Thompson, A.G.: Optimum tuning and damping of a dynamic
vibration absorber applied to a force excited anddampedprimary
system, Journal of Sound and Vibration, 77, 403–415, 1981.

[23] Wong, W.Q. and Cheung, Y.L.: Optimal design of a damped dy-
namic vibration absorber for vibration control of structure excited
by ground motion, Engineering Structures, 30, 282-286, 2008.


	1 Introduction
	2 Methodology
	2.1 Mathematical model and equation of motion
	2.2 Dynamic amplitude magnification factor for undamped primary system
	2.3 Minimax optimization formulation
	2.4 Numerical results and comparison

	3 Analysis and discussion of results
	4 Conclusions

